

JEE I NEET I Foundation

Motion

MOTION JEE MAIN 2021

Section : Mathematics Section A

1. The coefficients a, b and c of the quadratic equation, $a x^{2}+b x+c=0$ are obtained by throwing a dice three times. The probability that this equation has equal roots is :
(1) $\frac{1}{54}$
(2) $\frac{1}{72}$
(3) $\frac{1}{36}$
(4) $\frac{5}{216}$

Ans. (4)
Sol. $a x^{2}+b x+c=0$
$a, b, c \in\{1,2,3,4,5,6\}$
$\mathrm{n}(\mathrm{s})=6 \times 6 \times 6=216$
$D=0 \Rightarrow b^{2}=4 a c$
$a c=\frac{b^{2}}{4} \quad$ If $b=2, a c=1 \quad \Rightarrow \quad a=1, c=1$
If $b=4, a c=4 \quad \Rightarrow \quad a=1, c=4$ $a=4, c=1$ $a=2, c=2$
If $b=6, a c=9 \Rightarrow \quad a=3, c=3$
\therefore probability $=\frac{5}{216}$
2. Let α be the angle between the lines whose direction cosines satisfy the equations $1+m-n$ $=0$ and $\mathrm{I}^{2}+\mathrm{m}^{2}-\mathrm{n}^{2}=0$. Then the value of $\sin ^{4} \alpha+\cos ^{4} \alpha$ is :
(1) $\frac{3}{4}$
(2) $\frac{1}{2}$
(3) $\frac{5}{8}$
(4) $\frac{3}{8}$

Ans. (3)
Sol. $r^{2}+m^{2}+n^{2}=1$
$\therefore 2 n^{2}=1 \Rightarrow n= \pm \frac{1}{\sqrt{2}}$
$\therefore I^{2}+\mathrm{m}^{2}=\frac{1}{2} \& I+m=\frac{1}{\sqrt{2}}$

रिपिटर्स बैच का सर्वश्रेष्ठ परिणाम सिर्प मोशन केसाय

$\Rightarrow \frac{1}{2}-2 \operatorname{lm}=\frac{1}{2}$
$\Rightarrow \mathrm{m}=0$ or $\mathrm{m}=0$
$\therefore I=0, m=\frac{1}{\sqrt{2}} \quad$ or $I=\frac{1}{\sqrt{2}}$
$<0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}>\quad$ or $<\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}>$
$\therefore \cos \alpha=0+0+\frac{1}{2}=\frac{1}{2}$
$\therefore \sin ^{4} \alpha+\cos ^{4} \alpha=1-\frac{1}{2} \sin ^{2}(2 \alpha)=1-\frac{1}{2}, \frac{3}{4}=\frac{5}{8}$
3. The value of the integral $\int \frac{\sin \theta \cdot \sin 2 \theta\left(\sin ^{6} \theta+\sin ^{4} \theta+\sin ^{2} \theta\right) \sqrt{2 \sin ^{4} \theta+3 \sin ^{2} \theta+6}}{1-\cos 2 \theta} d \theta$ is
(where con is a constant of integration)
(1) $\frac{1}{18}\left[9-2 \sin ^{6} \theta-3 \sin ^{4} \theta-6 \sin ^{2} \theta\right]^{\frac{3}{2}}+c$
(2) $\frac{1}{18}\left[11-18 \sin ^{2} \theta+9 \sin ^{4} \theta-2 \sin ^{6} \theta\right]^{\frac{3}{2}}+c$
(3) $\frac{1}{18}\left[11-18 \cos ^{2} \theta+9 \cos ^{4} \theta-2 \cos ^{6} \theta\right]^{\frac{3}{2}}+\mathrm{c}$
(4) $\frac{1}{18}\left[9-2 \cos ^{6} \theta-3 \cos ^{4} \theta-6 \cos ^{2} \theta\right]^{\frac{3}{2}}+c$

Ans. (3)
Sol. $\int \frac{2 \sin ^{2} \theta \cos \theta\left(\sin ^{6} \theta+\sin ^{4} \theta+\sin ^{2} \theta\right) \sqrt{2 \sin ^{4} \theta+3 \sin ^{2} \theta+6}}{2 \sin ^{2} \theta} d \theta$
Let $\sin \theta=\mathrm{t}, \cos \theta \mathrm{d} \theta=\mathrm{dt}$
$=\int\left(t^{6}+t^{4}+t^{2}\right) \sqrt{2 t^{4}+3 t^{2}+6} d t=\int\left(t^{5}+t^{3}+t\right) \sqrt{2 t^{6}+3 t^{4}+6 t^{2}} d t$
Let $2 t^{6}+3 t^{4}+6 t^{2}=z$
$12\left(t^{5}+t^{3}+t\right) d t=d z$
$=\frac{1}{12} \int \sqrt{\mathrm{z}} \mathrm{dz}=\frac{1}{18} \mathrm{z}^{3 / 2}+\mathrm{c}$
$=\frac{1}{18}\left[\left(2 \sin ^{6} \theta+3 \sin ^{4} \theta+6 \sin ^{2} \theta\right)^{3 / 2}+C\right.$
$=\frac{1}{18}\left[\left(1-\cos ^{2} \theta\right)\left(2\left(1-\cos ^{2} \theta\right)^{2}+3-3 \cos ^{2} \theta+6\right)\right]^{3 / 2}+C$
$=\frac{1}{18}\left[\left(1-\cos ^{2} \theta\right)\left(2 \cos ^{4} \theta-7 \cos ^{2} \theta+11\right)\right]^{3 / 2}+C$
$=\frac{1}{18}\left[-2 \cos ^{6} \theta+9 \cos ^{4} \theta-18 \cos ^{2} \theta+11\right]^{3 / 2}+C$

MOTION JEE MAIN 2021

4. A man is observing, from the top of a tower, a boat speeding towards the tower from a certain point A, with uniform speed. At that point, angle of depression of the boat with the man's eye is 30° (Ignore man's height). After sailing for 20 seconds towards the base of the tower (which is at the level of water), the boat has reached a point B, where the angle of depression is 45°. Then the time taken (in seconds) by the boat from B to reach the base of the tower is :
(1) $10(\sqrt{3}-1)$
(2) $10 \sqrt{3}$
(3) 10
(4) $10(\sqrt{3}+1)$

Ans. (4)
Sol.

$\frac{h}{x+y}=\tan 30^{\circ}$
$x+y=\sqrt{3} h$
Also
$\frac{\mathrm{h}}{\mathrm{y}}=\tan 45^{\circ}$
$\mathrm{h}=\mathrm{y}$
put in (1)
$x+y=\sqrt{3} y$
$x=(\sqrt{3}-1) y$
$\frac{x}{20}=$ 'v'speed
\therefore time taken to reach
Foot from B
$\Rightarrow \frac{\mathrm{y}}{\mathrm{V}}$
$\Rightarrow \frac{\mathrm{x}}{(\sqrt{3}-1) \cdot \mathrm{x}} \times 20$
$\Rightarrow 10(\sqrt{3}+1)$

रिपिटर्स बैच का सर्वश्रेष्त परिणाम सिर्प मोशन केसाय

5. If $0<\theta, \phi<\frac{\pi}{2}, x=\sum_{n=0}^{\infty} \cos ^{2 n} \theta, y=\sum_{n=0}^{\infty} \sin ^{2 n} \phi$ and
$\mathrm{z}=\sum_{\mathrm{n}=0}^{\infty} \cos ^{2 \mathrm{n}} \theta \cdot \sin ^{2 \mathrm{n}} \phi$ then:
(1) $x y z=4$
(2) $x y-z=(x+y) z$
(3) $x y+y z+z x=z$
(4) $x y+z=(x+y) z$

Ans. (4)
Sol. $\quad x=1+\cos ^{2} \theta+$ \qquad . ∞
$x=\frac{1}{1-\cos ^{2} \theta}=\frac{1}{\sin ^{2} \theta}$
$y=1+\sin ^{2} \phi+$ \qquad . ∞
$y=\frac{1}{1-\sin ^{2} \phi}=\frac{1}{\cos ^{2} \phi}$
$z=\frac{1}{1-\cos ^{2} \theta \cdot \sin ^{2} \phi}=\frac{1}{1-\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)}=\frac{x y}{x y-(x-1)(y-1)}$
$x z+y z-z=x y$
$x y+z=(x+y) z$
6. The equation of the line through the point $(0,1,2)$ and perpendicular to the line $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{-2}$ is :
(1) $\frac{x}{-3}=\frac{y-1}{4}=\frac{z-2}{3}$
(2) $\frac{x}{3}=\frac{y-1}{4}=\frac{z-2}{3}$
(3) $\frac{x}{3}=\frac{y-1}{-4}=\frac{z-2}{3}$
(4) $\frac{x}{3}=\frac{y-1}{4}=\frac{z-2}{-3}$

Ans. (1)
Sol. $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{-2}=\lambda$
Any point on this line $(2 \lambda+1,3 \lambda-1,-2 \lambda+1)$
$\xrightarrow[\text { Direction }]{\rightarrow(2,3,-2)}$

MOTION JEE MAIN 2021

Direction ratio of line to be found ($2 \lambda+1,3 \lambda-2,-2 \lambda-1$)
$\therefore \overrightarrow{\mathrm{d}}_{1} \cdot \overrightarrow{\mathrm{~d}}_{2}=0$
$\lambda=2 / 17$
Direction ratio of line $(21,-28,-21) \equiv(3,-4,-3) \equiv(-3,4,3)$
7. The statement $A \rightarrow(B \rightarrow A)$ is equivalent to:
(1) $A \rightarrow(A \wedge B)$
(2) $A \rightarrow(A \vee B)$
(3) $A \rightarrow(A \rightarrow B)$
(4) $A \rightarrow(A \leftrightarrow B)$

Ans. (2)
Sol. $\quad A \rightarrow(B \rightarrow A)$
$\Rightarrow A \rightarrow(\sim B \vee A)$
$\Rightarrow \sim A \vee(\sim B \vee A)$
$\Rightarrow \sim B \vee(\sim A \vee A)$
$\Rightarrow \sim B \vee t$
$=\mathrm{t}$ (tantology)
From options :
(2) $A \rightarrow(A \vee B)$
$\Rightarrow \sim A \vee(A \vee B)$
$\Rightarrow(\sim A \vee A) \vee B$
$\Rightarrow t \vee B$
$\Rightarrow \mathrm{t}$
8. The integer ' k ', for which the inequality $x^{2}-2(3 k-1) x+8 k^{2}-7>0$ is valid for every x in R is:
(1) 3
(2) 2
(3) 4
(4) 0

Ans. (1)
Sol. $\mathrm{D}<0$

$$
\begin{aligned}
& (2(3 k-1))^{2}-4\left(8 k^{2}-7\right)<0 \\
& 4\left(9 k^{2}-6 k+1\right)-4\left(8 k^{2}-7\right)<0 \\
& k^{2}-6 k+8<0 \\
& (k-4)(k-2)<0 \\
& 2<k<4 \\
& \text { then } k=3
\end{aligned}
$$

Rिपिहर्स बैच का सर्वश्रेष्त परिणाम सिर्प मोशन केसाय

9. A tangent is drawn to the parabola $y^{2}=6 x$ which is perpendicular to the line $2 x+y=1$. Which of the following points does NOT lie on it ?
(1) $(0,3)$
(2) $(-6,0)$
(3) $(4,5)$
(4) $(5,4)$

Ans. (4)
Sol. Equation of tangent : $y=m x+\frac{3}{2 m}$
$\mathrm{m}_{\mathrm{T}}=\frac{1}{2}(\because$ perpendicular to line $2 \mathrm{x}+\mathrm{y}=1)$
$\therefore \quad$ tangent is : $y=\frac{x}{2}+3 \quad \Rightarrow x-2 y+6=0$
10. Let $f, g: N \rightarrow N$ such that $f(n+1)=f(n)+f(1) \forall n \in N$ and g be any arbitrary function. Which of the following statements is NOT true ?
(1) fis one-one
(2) If fog is one-one, then g is one-one
(3) If g is onto, then fog is one-one
(4) If f is onto, then $f(n)=n \forall n \in N$

Ans. (3)
Sol. $f(n+1)=f(n)+1$
$f(2)=2 f(1)$
$f(3)=3 f(1)$
$f(4)=4 f(1)$
...
$f(n)=n f(1)$
$f(x)$ is one-one
11. Let the lines $(2-i) z=(2+i) \bar{z}$ and $(2+i) z+(i-2) \bar{z}-4 i=0$, (here $\left.i^{2}=-1\right)$ be normal to a circle C. If the line $i z+\bar{z}+1+i=0$ is tangent to this circle C, then its radius is:
(1) $\frac{3}{\sqrt{2}}$
(2) $3 \sqrt{2}$
(3) $\frac{3}{2 \sqrt{2}}$
(4) $\frac{1}{2 \sqrt{2}}$

MOTION JEE MAIN 2021

Ans. (3)
Sol. $\quad(2-i) z=(2+i) \bar{z}$
$\Rightarrow(2-i)(x+i y)=(2+i)(x-i y)$
$\Rightarrow 2 \mathrm{x}-\mathrm{ix}+2 \mathrm{iy}+\mathrm{y}=2 \mathrm{x}+\mathrm{ix}-2-\mathrm{i} \mathrm{y}+\mathrm{y}$
$\Rightarrow 2 \mathrm{ix}-4 \mathrm{iy}=0$
$\mathrm{L}_{1}: \mathrm{x}-2 \mathrm{y}=0$
$\Rightarrow(2+i) z+(i-2) \bar{z}-4 i=0$.
$\Rightarrow(2+i)(x+i y)+(i-2)(x-i y)-4 i=0$.
$\Rightarrow 2 x+i x+2 i y-y+i x-2 x+y+2 i y-4 i=0$
$\Rightarrow 2 \mathrm{ix}+4 \mathrm{iy}-4 \mathrm{i}=0$
$\mathrm{L}_{2}: \mathrm{x}+2 \mathrm{y}-2=0$
Solve L_{1} and $L_{2} 4 y=2, y=\frac{1}{2}$
$\therefore \mathrm{x}=1$
Centre $\left(1, \frac{1}{2}\right)$
$\mathrm{L}_{3}: i \mathrm{z}+\overline{\mathrm{z}}+1+\mathrm{i}=0$
$\Rightarrow i(x+i y)+x-i y+1+i=0$
$\Rightarrow \mathrm{ix}-\mathrm{y}+\mathrm{x}-\mathrm{iy}+1+\mathrm{i}=0$
$\Rightarrow(x-y+1)+i(x-y+1)=0$
Radius $=$ distance from $\left(1, \frac{1}{2}\right)$ to $x-y+1=0$
$r=\frac{1-\frac{1}{2}+1}{\sqrt{2}}$
$r=\frac{3}{2 \sqrt{2}}$
12. All possible values of $\theta \in[0,2 \pi]$ for which $\sin 2 \theta+\tan 2 \theta>0$ lie in:
(1) $\left(0, \frac{\pi}{2}\right) \cup\left(\pi, \frac{3 \pi}{2}\right)$
(2) $\left(0, \frac{\pi}{4}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right) \cup\left(\pi, \frac{5 \pi}{4}\right) \cup\left(\frac{3 \pi}{2}, \frac{7 \pi}{4}\right)$
(3) $\left(0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right) \cup\left(\pi, \frac{7 \pi}{6}\right)$
(4) $\left(0, \frac{\pi}{4}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right) \cup\left(\frac{3 \pi}{2}, \frac{11 \pi}{6}\right)$

Ans. (2)
Sol.

$\tan 2 \theta(1+\cos 2 \theta)>0$
$2 \theta \in\left(0, \frac{\pi}{2}\right) \cup\left(\pi, \frac{3 \pi}{2}\right) \cup\left(2 \pi, \frac{5 \pi}{2}\right) \cup\left(3 \pi, \frac{7 \pi}{2}\right)$
$\Rightarrow \theta \in\left(0, \frac{\pi}{4}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right) \cup\left(\pi, \frac{5 \pi}{4}\right) \cup\left(\frac{3 \pi}{2}, \frac{7 \pi}{4}\right)$
13. The image of the point $(3,5)$ in the line $x-y+1=0$, lies on :
(1) $(x-2)^{2}+(y-4)^{2}=4$
(2) $(x-4)^{2}+(y+2)^{2}=16$
(3) $(x-4)^{2}+(y-4)^{2}=8$
(4) $(x-2)^{2}+(y-2)^{2}=12$

Ans. (1)
Sol. Image of $P(3,5)$ on the line $x-y+1=0$ is
$\frac{x-3}{1}=\frac{y-5}{-1}=\frac{-2(3-5+1)}{2}=1$
$x=4, y=4$
\therefore Image is $(4,4)$
Which lies on
$(x-2)^{2}+(y-4)^{2}=4$
14. If Rolle's theorem holds for the function $f(x)=x^{3}-a x^{2}+b x-4, x \in[1,2]$ with $f^{\prime}\left(\frac{4}{3}\right)=0$, then ordered pair (a, b) is equal to :
(1) $(-5,8)$
(2) $(5,8)$
(3) $(5,-8)$
(4) $(-5,-8)$

Ans. (2)
Sol. $f(1)=f(2)$
$\Rightarrow 1-a+b-4=8-4 a+2 b-4$
$3 a-b=7$
$f^{\prime}(x)=3 x^{2}-2 a x+b$
$\Rightarrow f^{\prime}\left(\frac{4}{3}\right)=0 \Rightarrow 3 \times \frac{16}{9}-\frac{8}{3} a+b=0$
$\Rightarrow-8 \mathrm{a}+3 \mathrm{~b}=-16$
$a=5, b=8$

MOTION JEE MAIN 2021

15. If the curves, $\frac{x^{2}}{a}+\frac{y^{2}}{b}=1$ and $\frac{x^{2}}{c}+\frac{y^{2}}{d}=1$ intersect each other at an angle of 90°, then which of the following relations is true ?
(1) $a+b=c+d$
(2) $a-b=c-d$
(3) $a b=\frac{c+d}{a+b}$
(4) $a-c=b+d$

Ans. (2)
Sol. $\frac{x^{2}}{a}+\frac{y^{2}}{b}=1$
diff : $\frac{2 x}{a}+\frac{2 y}{b} \frac{d y}{d x}=0 \Rightarrow \frac{y}{b} \frac{d y}{d x}=\frac{-x}{a}$
$\frac{d y}{d x}=\frac{-b x}{a y}$
$\frac{x^{2}}{c}+\frac{y^{2}}{d}=1$
Diff : $\frac{d y}{d x}=\frac{-d x}{c y}$
$m_{1} m_{2}=-1 \Rightarrow \frac{-b x}{a y} \times \frac{-d x}{c y}=-1$
$\Rightarrow b d x^{2}=-a c y^{2}$
(1) $-(3) \Rightarrow\left(\frac{1}{a}-\frac{1}{c}\right) x^{2}+\left(\frac{1}{b}-\frac{1}{d}\right) y^{2}=0$
$\Rightarrow \frac{\mathrm{c}-\mathrm{a}}{\mathrm{ac}} \mathrm{x}^{2}+\frac{\mathrm{d}-\mathrm{b}}{\mathrm{bd}} \times\left(\frac{-\mathrm{bd}}{\mathrm{ac}}\right) \mathrm{x}^{2}=0$ (using 5)
$\Rightarrow(c-a)-(d-b)=0$
$\Rightarrow \mathrm{c}-\mathrm{a}=\mathrm{d}-\mathrm{b}$
$\Rightarrow \mathrm{c}-\mathrm{d}=\mathrm{a}-\mathrm{b}$
16. $\lim _{n \rightarrow \infty}\left(1+\frac{1+\frac{1}{2}+\ldots \ldots .+\frac{1}{n}}{n^{2}}\right)^{n}$ is equal to :
(1) $\frac{1}{2}$
(2) $\frac{1}{e}$
(3) 1
(4) 0

रिपिटर्स बैच का सर्वश्रेष्ठ परिणाम सिर्प मोशन के साय

Ans. (3)

Sol. It is 1^{∞} form
$L=\mathrm{e}^{\lim _{n \rightarrow \infty}\left(\frac{1+\frac{1}{2}+\frac{1}{3}+\ldots .+\frac{1}{n}}{n}\right)}$
$S=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\left(\frac{1}{8}+\ldots \ldots \ldots+\frac{1}{15}\right)$
$\mathrm{S}<1+\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}\right) \ldots \ldots \ldots+\underbrace{\left(\frac{1}{2^{\mathrm{P}}}+\ldots \ldots \ldots+\frac{1}{2^{\mathrm{P}}}\right)}_{2^{\mathrm{P}} \text { times }}$
$S<1+1+1+1+$. \qquad $+1$
$S<P+1$
$\therefore \quad \mathrm{L}=\mathrm{e}^{\lim _{n \rightarrow \infty} \frac{(\mathrm{P}+1)}{2^{P}}}$
$\Rightarrow L=e^{\circ}=1$
17. The total number of positive integral solutions (x, y, z) such that $x y z=24$ is
(1) 36
(2) 45
(3) 24
(4) 30

Ans. (4)
Sol. $x . y . z=24$
$x . y . z=2^{3} \cdot 3^{1}$
Now using beggars method.
3 things to be distributed among 3 persons
Each may receive none, one or more
$\therefore{ }^{5} \mathrm{C}_{2}$ ways
Similarly for '1' $\quad \therefore{ }^{3} \mathrm{C}_{2}$ ways
Total ways $={ }^{5} \mathrm{C}_{2} \cdot{ }^{3} \mathrm{C}_{2}=30$ ways
18. If a curve passes through the origin and the slope of the tangent to it at any point (x, y) is $\frac{x^{2}-4 x+y+8}{x-2}$,then this curve also passes through the point :
(1) $(4,5)$
(2) $(5,4)$
(3) $(4,4)$
(4) $(5,5)$

Ans. (4)
Sol. $\frac{d y}{d x}=\frac{(x-2)^{2}+y+4}{(x-2)}=(x-2)+\frac{y+4}{(x-2)}$
Let $\mathrm{x}-2=\mathrm{t} \Rightarrow \mathrm{dx}=\mathrm{dt}$
and $y+4=u \Rightarrow d y=d u$

MOTION JEE MAIN 2021

$\frac{d y}{d x}=\frac{d u}{d t}$
$\frac{d u}{d t}=t+\frac{u}{t} \Rightarrow \frac{d u}{d t}-\frac{u}{t}=t$
I.F $=e^{\int \frac{-1}{t} d t}=e^{- \text {lnt }}=\frac{1}{t}$
u. $\frac{1}{\mathrm{t}}=\int \mathrm{t} . \frac{1}{\mathrm{t}} \mathrm{dt} \Rightarrow \frac{\mathrm{u}}{\mathrm{t}}=\mathrm{t}+\mathrm{c}$
$\frac{y+4}{x-2}=(x-2)+c$
Passing through (0,0)
$\mathrm{c}=0$
$\Rightarrow(y+4)=(x-2)^{2}$
19. The value of $\int_{-1}^{1} x^{2} e^{\left[x^{3}\right]} d x$, where [$\left.t\right]$ denotes the greatest integer $\leq t$, is :
(1) $\frac{e+1}{3}$
(2) $\frac{e-1}{3 e}$
(3) $\frac{e+1}{3 e}$
(4) $\frac{1}{3 e}$

Ans. (3)
Sol. $I=\int_{-1}^{0} x^{2} \cdot e^{-1} d x+\int_{0}^{1} x^{2} d x$
$\therefore I=\left.\frac{\mathrm{x}^{3}}{3 \mathrm{e}}\right|_{-1} ^{0}+\left.\frac{\mathrm{x}^{3}}{3}\right|_{0} ^{1}$
$\Rightarrow \mathrm{I}=\frac{1}{3 \mathrm{e}}+\frac{1}{3}$

सिपिलर्स बैच का सर्वश्रेष्ठ परिणाम सिर्प मोशन के साय

20. When a missile is fired from a ship, the probability that it is intercepted is $\frac{1}{3}$ and the probability that the missile hits the target, given that it is not intercepted, is $\frac{3}{4}$. If three missiles are fired independently from the ship, then the probability that all three hit the target, is:
(1) $\frac{1}{8}$
(2) $\frac{1}{27}$
(3) $\frac{3}{4}$
(4) $\frac{3}{8}$

Ans. (1)
Sol. Probability of not getting intercepted $=\frac{2}{3}$
Probability of missile hitting target $=\frac{3}{4}$
\therefore Probability that all 3 hit the target $=\left(\frac{2}{3} \times \frac{3}{4}\right)^{3}=\frac{1}{8}$

Section : Mathematics Section B

1. Let $A_{1}, A_{2}, A_{3}, \ldots \ldots$. be squares such that for each $n \geq 1$, the length of the side of A_{n} equals the length of diagonal of A_{n+1}. If the length of A_{1} is 12 cm , then the smallest value of n for which area of A_{n} is less than one, is \qquad .
Ans. (9)
Sol.

12

$$
x=\frac{12}{\sqrt{2}} \quad y=\frac{12}{(\sqrt{2})^{2}}
$$

$\therefore \quad$ Side lengths are in G.P.

$$
\begin{array}{ll}
& T_{n}=\frac{12}{(\sqrt{2})^{n-1}} \\
\therefore \quad & \text { Area }=\frac{144}{2^{n-1}}<1 \quad \Rightarrow 2^{n-1}>144 \\
& \text { Smallest } n=9
\end{array}
$$

MOTION JEE MAIN 2021

2. The graphs of sine and cosine functions, intersect each other at a number of points and between two consecutive points of intersection, the two graphs enclose the same area A. Then A^{4} is equal to \qquad
Ans. (64)
Sol.

$A=\int_{\frac{\pi}{4}}^{\frac{5 \pi}{4}}(\sin x-\cos x) d x=[-\cos x-\sin x]_{\pi / 4}^{5 \pi / 4}$
$=-\left[\left(\cos \frac{5 \pi}{4}+\sin \frac{\pi}{4}\right)-\left(\cos \frac{\pi}{4}+\sin \frac{\pi}{4}\right)\right]$
$=-\left[\left(-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right)-\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)\right]$
$=\frac{4}{\sqrt{2}}=2 \sqrt{2}$
$\Rightarrow A^{4}=(2 \sqrt{2})^{4}=64$
3. The locus of the point of intersection of the lines $(\sqrt{3}) k x+k y-4 \sqrt{3}=0$ and $\sqrt{3} x-y-4(\sqrt{3})$ $\mathrm{k}=0$ is a conic, whose eccentricity is \qquad .

Ans. (2)
Sol. $\quad \sqrt{3} \mathrm{kx}+\mathrm{ky}=4 \sqrt{3}$
$\sqrt{3} k x-k y=4 \sqrt{3} k^{2}$
Adding equation (1) \& (2)
$2 \sqrt{3} \mathrm{kx}=4 \sqrt{3}\left(\mathrm{k}^{2}+1\right)$
$x=2\left(k+\frac{1}{k}\right)$
Substracting equation (1) \& (2)
$y=2 \sqrt{3}\left(\frac{1}{k}-k\right)$
$\therefore \frac{\mathrm{x}^{2}}{4}-\frac{\mathrm{y}^{2}}{12}=4$
$\frac{x^{2}}{16}-\frac{y^{2}}{48}=1 \quad$ Hyperbola
$\therefore \mathrm{e}^{2}=1+\frac{48}{16}$
$e=2$
4. If $A=\left[\begin{array}{lr}0 & -\tan \left(\frac{\theta}{2}\right) \\ \tan \left(\frac{\theta}{2}\right) & 0\end{array}\right]$ and $\left(I_{2}+A\right)\left(I_{2}-A\right)^{-1}$
$=\left[\begin{array}{ll}a & -b \\ b & a\end{array}\right]$, then $13\left(a^{2}+b^{2}\right)$ is equal to .
Ans. (13)
Sol. $A=\left[\begin{array}{cc}0 & -\tan \frac{\theta}{2} \\ \tan \frac{\theta}{2} & 0\end{array}\right]$
$\Rightarrow I+A=\left[\begin{array}{cc}1 & -\tan \frac{\theta}{2} \\ \tan \frac{\theta}{2} & 1\end{array}\right]$
$\Rightarrow I-A=\left[\begin{array}{cc}1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1\end{array}\right] \quad\left\{\therefore|I-A|=\sec ^{2} \theta / 2\right\}$
$\Rightarrow(I-A)^{-1}=\frac{1}{\sec ^{2} \frac{\theta}{2}}\left[\begin{array}{cc}1 & -\tan \frac{\theta}{2} \\ \tan \frac{\theta}{2} & 1\end{array}\right]$
$\Rightarrow(I+A)(I-A)^{-1}=\frac{1}{\sec ^{2} \frac{\theta}{2}}\left[\begin{array}{cc}1 & -\tan \frac{\theta}{2} \\ \tan \frac{\theta}{2} & 1\end{array}\right]\left[\begin{array}{cc}1 & -\tan \frac{\theta}{2} \\ \tan \frac{\theta}{2} & 1\end{array}\right]$
$=\frac{1}{\sec ^{2} \frac{\theta}{2}}\left[\begin{array}{cc}1-\tan ^{2} \frac{\theta}{2} & -2 \tan \frac{\theta}{2} \\ 2 \tan \frac{\theta}{2} & 1-\tan ^{2} \frac{\theta}{2}\end{array}\right]$
$a=\frac{1-\tan ^{2} \frac{\theta}{2}}{\sec ^{2} \frac{\theta}{2}}$

MOTION JEE MAIN 2021

$\mathrm{b}=\frac{2 \tan \frac{\theta}{2}}{\sec ^{2} \frac{\theta}{2}}$
$\therefore \mathrm{a}^{2}+\mathrm{b}^{2}=1$
5. Let $f(x)$ be a polynomial of degree 6 in x, in which the coefficient of x^{6} is unity and it has extrema at $x=-1$ and $x=1$. If $\lim _{x \rightarrow 0} \frac{f(x)}{x^{3}}=1$, then $5 . f(2)$ is equal to \qquad
Ans. (144)
Sol. $f(x)=x^{6}+a x^{5}+b x^{4}+x^{3}$
$\therefore f^{\prime}(x)=6 x^{5}+5 a x^{4}+4 b x^{3}+3 x^{2}$
Roots $1 \&-1$
$\therefore 6+5 a+4 b+3=0 \&-6+5 a-4 b+3=0$ solving
$a=-\frac{3}{5} \quad b=-\frac{3}{2}$
$\therefore f(x)=x^{6}-\frac{3}{5} x^{5}-\frac{3}{2} x^{4}+x^{3}$
$\therefore 5 . f(2)=5\left[64-\frac{96}{5}-24+8\right]=144$
6. The number of points, at which the function $f(x)=|2 x+1|-3|x+2|+\left|x^{2}+x-2\right|, x \in R$ is not differentiable, is \qquad -.
Ans. (2)
Sol. $f(x)=|2 x+1|-3|x+2|+\left|x^{2}+x-2\right|$
$f(x)= \begin{cases}x^{2}-7 ; & x>1 \\ -x^{2}-2 x-3 ; & -\frac{1}{2}<x<1 \\ -x^{2}-6 x-5 ; & -2<x<\frac{-1}{2} \\ x^{2}+2 x+3 ; & x<-2\end{cases}$
$\therefore f^{\prime}(x)= \begin{cases}2 \mathrm{x} ; & \mathrm{x}>1 \\ -2 \mathrm{x}-3 ; & -\frac{1}{2}<\mathrm{x}<1 \\ -2 \mathrm{x}-6 ; & -2<\mathrm{x}<\frac{-1}{2} \\ 2 \mathrm{x}+2 ; & \mathrm{x}<-2\end{cases}$
Check at $1,-2$ and $\frac{-1}{2}$
Non. Differentiable at $x=1$ and $\frac{-1}{2}$
7. If the system of equations

$$
\begin{aligned}
& k x+y+2 z=1 \\
& 3 x-y-2 z=2 \\
& -2 x-2 y-4 z=3
\end{aligned}
$$

has infinitely many solutions, then k is equal
to \qquad —.
Ans. (21)
Sol. $\quad \mathrm{D}=0$
$\Rightarrow\left|\begin{array}{ccc}\mathrm{k} & 1 & 2 \\ 3 & -1 & -2 \\ -2 & -2 & -4\end{array}\right|=0$
$\Rightarrow \mathrm{k}(4-4)-1(-12-4)+2(-6-2)$
$\Rightarrow 16-16=0$
Also. $\mathrm{D}_{1}=\mathrm{D}_{2}=\mathrm{D}_{3}=0$
$\Rightarrow \mathrm{D}_{2}=\left|\begin{array}{ccc}\mathrm{k} & 1 & 2 \\ 3 & 2 & -2 \\ -2 & 3 & -4\end{array}\right|=0$
$\Rightarrow \mathrm{k}(-8+6)-1(-12-4)+2(9+4)=0$
$\Rightarrow-2 \mathrm{k}+16+26=0$
$\Rightarrow 2 \mathrm{k}=42$
$\Rightarrow \mathrm{k}=21$
8. Let $\vec{a}=\hat{i}+2 \hat{j}-\hat{k}, \vec{b}=\hat{i}-\hat{j}$ and $\vec{c}=\hat{i}-\hat{j}-\hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{a}=\vec{c} \times \vec{a}$ and $\vec{r} . \vec{b}=0$, then $\vec{r} . \vec{a}$ is equal to \qquad
Ans. (12)
Sol. $\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{c}} \times \vec{a}$
$\vec{r} \times \vec{a}-\vec{c} \times \vec{a}=0$
$(\vec{r}-\vec{c}) \times \vec{a}=0$
$\therefore \overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{c}}=\lambda \overrightarrow{\mathrm{a}}$
$\overrightarrow{\mathrm{r}}=\lambda \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{c}}$
$\vec{r} \cdot \vec{b}=\lambda \vec{a} \cdot \vec{b}+\vec{c} \cdot \vec{b}=0$
$\Rightarrow \lambda(1-2)+2=0$
$\Rightarrow \lambda=2$
$\therefore \overrightarrow{\mathrm{r}}=2 \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{c}}$
$\vec{r} . \vec{a}=2|\vec{a}|^{2}+\vec{a} . \vec{c}$
$=2(1+4+1)+(1-2+1)$
$=12$

MOTION JEE MAIN 2021

9. Let $A=\left[\begin{array}{lll}x & y & z \\ y & z & x \\ z & x & y\end{array}\right]$, where x, y and z are real numbers such that $x+y+z>0$ and $x y z=2$. If $A^{2}=I_{3}$, then the value of $x^{3}+y^{3}+z^{3}$ is \qquad .
Ans. (7)
Sol. $A=\left[\begin{array}{ccc}x & y & z \\ y & z & x \\ z & x & y\end{array}\right] \quad \therefore|A|=\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$
$A^{2}=I_{3}$
$\left|A^{2}\right|=1$
$\therefore\left(x^{3}+y^{3}+z^{3}-3 x y z\right)^{2}=1$
$\Rightarrow x^{3}+y^{3}+z^{3}-3 x y z=1 \quad$ only as $(x+y+z>0)$
$\Rightarrow x^{3}+y^{3}+z^{3}=6+1=7$
10. The total number of numbers, lying between 100 and 1000 that can be formed with the digits $1,2,3,4,5$, if the repetition of digits is not allowed and numbers are divisible by either 3 or 5 is \qquad .
Ans. (32)
Sol. $\quad \square \square$ divisible by $\rightarrow 3$ divisible by 5

$$
\begin{gathered}
12 \rightarrow 3,4,5 \rightarrow 3!=6 \\
15 \rightarrow 2,3,4 \rightarrow 3!=6 \\
24 \rightarrow 1,3,5 \rightarrow 3!=6 \\
42 \rightarrow 1,2,3 \rightarrow 3!=6 \\
24
\end{gathered}
$$

$$
\square 5=12
$$

$$
4 \times 3
$$

Required No. $=24+12-4=32$

Another opportunity to strengthen your preparation

UNNATI CRASH COURSE JEE Main May 2021 at Kota Classroom
 40 Classes of each subjects
 - Doubt Clearing sessions by Expert faculties
 - Full Syllabus Tests to improve your question solving skills
 - Thorough learning of concepts with regular classes
 \bullet Gettips \& trick along with sample papers

Course Fee : ₹ 20,000

Start your JEE Advanced 2021

Preparation with

UTTHAN CRASH COURSE at Kota Classroom

- Complete course coverage
- 55 Classes of each subject
- 17 Full \& 6 Part syllabus tests will strengthen your exam endurance
- Doubt clearing sessions under the guidance of expert faculties
- Gettips \& trick along with sample papers

